Mobile Transactional Coordination

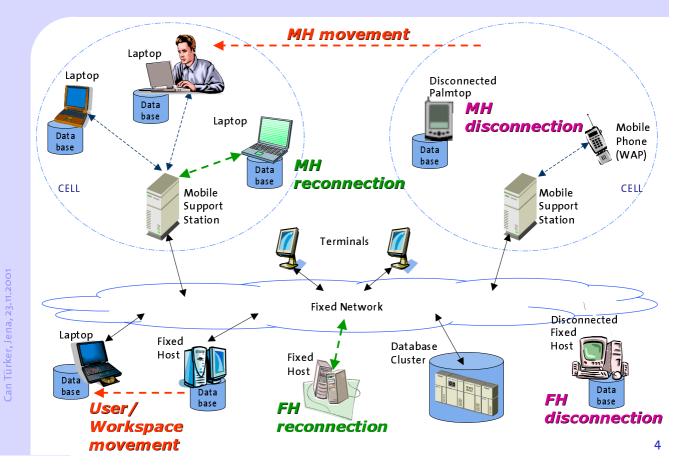
Can Türker

ETH Zurich / U Konstance

"Mobile Datenbanken und Informationssysteme", GI-Arbeitskreis-Gründungstreffen, Jena, 23.11.2001

... towards Pervasive Computing

- Gartner Group: "by 2003 more than 137 million business users will be involved in some form of remote work"
- Accenture: "by 2005 over 500 million mobile devices will offer Internet access"
- Conclusions
 - mobile hosts (MH; laptops, palmtops, smart phones, etc.) outstrips fixed hosts (FH; personal computers, desktops, etc.)
 - the way information is created and processed will change within this increasingly ubiquitous network
- Need
 - infrastructure to coordinate concurrent information access and processing in the presence of mobile hosts and users


Characteristics of Mobility

- Mobile information sources and consumers
 - physical access point to the network may change: sources as well as consumers may move
 - sources as well as consumers may be disconnected
- User and Context Awareness
 - tracking/monitoring information sources and consumers
 - consumer's information needs may shift with location change
- Data management techniques have to be revisited

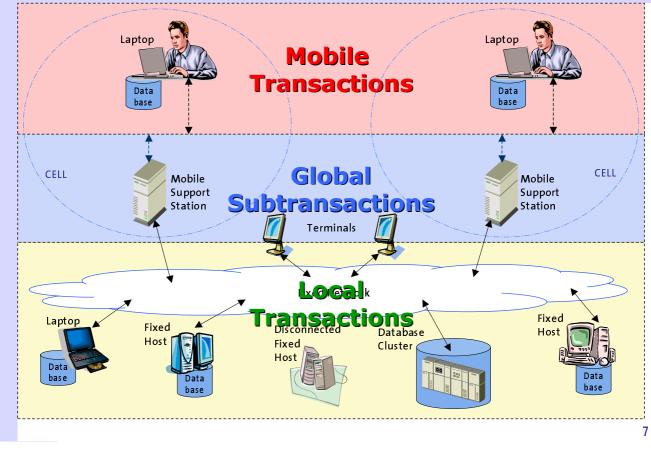
Resource Limitations (Bandwidth, Memory, Computing Power,)	Optimization + Careful Resource Sharing
Scalability	
Correctness Concerns	Transactional Guarantees
Combining Many Sources	Data Integration

3

Movements and Disconnections

Abstractions

Abstraction of Data Storage	(Relational) DBMS
Abstraction of Concurrency & System Failures	DBMS & TP-Monitors with Concurrency Control & Recovery
Abstraction of Method Implementations	Object-relational DBMS with Object Methods, Triggers & Stored Procedures
Abstraction of Distribution, Heterogeneity & Autonomy	Distributed & Federated DBMS, Data Integration, Conflict Resolution
Abstraction of Movements & Disconnections	Mobile DBMS, Context Maintenance, Replication & Synchronisation, Profiling


Transparency of Mobility

- <u>Challenge</u>: information access and processing everywhere and at anytime while supporting
 - transparent disconnections and
 - transparent movements of users and information components

up to a certain degree

How much transparency is indeed needed and reasonable?

Transaction Tiers

Disconnections

- "<u>The flight worker</u>": Working in the "intended" disconnected mode requires some lazy replication techniques
 - updates are precommitted locally transparent to the user?
 - precommitted updates are propagated asynchronously when reconnected to the network
 - conflicts may occur
 - run conflict resolution when a conflict arises
- Conflict detection via timestamps, version vectors, etc.
- Conflict resolution (during global commitment)
 - optimistic (resolution): function-based, manual
 - pessimistic (avoidance): primary copy, ROWA, quorum

Can Türker, Jena, 23.11.2001

Movements

- "<u>The train/tram/bus worker</u>": Working while physically moving requires transparent support of cell migration and "unintended" disconnections
 - create subtransactions on several mobile support stations
 - coordinate these substranactions correctly

transparent to the user?

- wireless communication and cost issues
- "<u>The home worker</u>": Resume and/or continue work at another host (mobile or fixed)
 - continue transactions
 - create new subtransactions (within the existing workspace / transaction sphere)

Mobile Transaction Models

- Mobile Transactions involve execution/initiation on MH
 - ACID cannot be supported generally
 - nevertheless, certain transactional guarantees shall be ensured always and everywhere
- MH may or may not have transaction processing capabilities
 - MH initiates a mobile transaction on a FH where the complete processing is done
 - MH can also run transactions locally
- MH may change its location and network connection while transactions are being executed (transaction movement)
- MH may disconnect while transactions are being executed

Overview of Mobile Transaction Models

Subtransaction Types & Mobility Support	Open	Closed	Vital	Non-vital	Dependent	Independent	Substitutable	Compensatable	Temporal	MH Disconnection	MH Movement	MH Usage	User Profiling
Reporting-/Co-Txs Chrysanthis 93	~	~	~		~		~	✓			~	н	
Isolation-Only Txs Lu & Satyanarayanan 94		~	~		~					~		н	
MDSTPM Txs Yeo & Zaslavsky 94	~	~	~	~	~		~	~		\checkmark		L	
Weak/Strict Txs Pitoura & Bhargava 94	~	~	~	~	~		~	~		\checkmark	~	н	
Kangaroo Txs Dunham et al. 97	~		~		\checkmark			\checkmark		\checkmark	~	L	
Pro-Motion Walborn & Chrysanthis 97	\checkmark	\checkmark	~		~		~	~	\checkmark	\checkmark	\checkmark	н	\checkmark
Toggle Txs Dirckze & Gruenwald 98	\checkmark		~	~	\checkmark		~	\checkmark		\checkmark	~	L	
Moflex Txs Ku & Kim oo	\checkmark	\checkmark	✓	✓	~		✓	\checkmark	\checkmark	\checkmark	~	L	

11

Overview of Commercial Mobile DB Approaches

Subtransaction Types & Mobility Support	Savepoints	Tx Nesting
IBM DB2 Everyplace		
Informix Cloudspace		
Microsoft SQL Server CE	\checkmark	\checkmark
Oracle Lite	\checkmark	
Sybase Anywhere	\checkmark	\checkmark

- only a few supports nested Txs (closed, vital, dependent)
- no compensating / alternative Tx
- "basic" data replication and synchronization techniques
- no transaction mobility

Can Türker, Jena, 23.11.2001

Conclusion

- Mobile transactional coordination has to deal with
 - weak connectivity and frequent disconnections
 - asynchronous, dynamic replication with profiling
 - publish & subscribe for data recharging & propagation
 - large-scale replication
 - user interaction / feedback
 - long-running tasks and decentralized commitments
 - real-time constraints
- Commercial approaches mostly neglect these issues
- <u>Main open question</u>: Where to implement the abstraction of disconnections and movements?
 - Do we really need extensions to transaction models or can we model these issues as additional steps of an overall process?
 - How we express costs?